Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Active exploration in adaptive model predictive control (2003.14120v2)

Published 31 Mar 2020 in eess.SY, cs.SY, and math.OC

Abstract: A dual adaptive model predictive control (MPC) algorithm is presented for linear, time-invariant systems subject to bounded disturbances and parametric uncertainty in the state-space matrices. Online set-membership identification is performed to reduce the uncertainty and thus control affects both the informativity of identification and the system's performance. The main contribution of the paper is to include this dual effect in the MPC optimization problem using a predicted worst-case cost in the objective function. This allows the controller to perform active exploration, that is, the control input reduces the uncertainty in the regions of the parameter space that have most influence on the performance. Additionally, the MPC algorithm ensures robust constraint satisfaction of state and input constraints. Advantages of the proposed algorithm are shown by comparing it to a passive adaptive MPC algorithm from the literature.

Citations (11)

Summary

We haven't generated a summary for this paper yet.