Effects of social distancing and isolation on epidemic spreading: a dynamical density functional theory model
Abstract: For preventing the spread of epidemics such as the coronavirus disease COVID-19, social distancing and the isolation of infected persons are crucial. However, existing reaction-diffusion equations for epidemic spreading are incapable of describing these effects. We present an extended model for disease spread based on combining an SIR model with a dynamical density functional theory where social distancing and isolation of infected persons are explicitly taken into account. The model shows interesting nonequilibrium phase separation associated with a reduction of the number of infections, and allows for new insights into the control of pandemics.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.