Papers
Topics
Authors
Recent
Search
2000 character limit reached

Scene Context Based Semantic Segmentation for 3D LiDAR Data in Dynamic Scene

Published 31 Mar 2020 in cs.RO | (2003.13926v1)

Abstract: We propose a graph neural network(GNN) based method to incorporate scene context for the semantic segmentation of 3D LiDAR data. The problem is defined as building a graph to represent the topology of a center segment with its neighborhoods, then inferring the segment label. The node of graph is generated from the segment on range image, which is suitable for both sparse and dense point cloud. Edge weights that evaluate the correlations of center node and its neighborhoods are automatically encoded by a neural network, therefore the number of neighbor nodes is no longer a sensitive parameter. A system consists of segment generation, graph building, edge weight estimation, node updating, and node prediction is designed. Quantitative evaluation on a dataset of dynamic scene shows that our method has better performance than unary CNN with 8% improvement, as well as normal GNN with 17% improvement.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.