Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 218 tok/s Pro
2000 character limit reached

Difference Attention Based Error Correction LSTM Model for Time Series Prediction (2003.13616v1)

Published 30 Mar 2020 in cs.LG and stat.ML

Abstract: In this paper, we propose a novel model for time series prediction in which difference-attention LSTM model and error-correction LSTM model are respectively employed and combined in a cascade way. While difference-attention LSTM model introduces a difference feature to perform attention in traditional LSTM to focus on the obvious changes in time series. Error-correction LSTM model refines the prediction error of difference-attention LSTM model to further improve the prediction accuracy. Finally, we design a training strategy to jointly train the both models simultaneously. With additional difference features and new principle learning framework, our model can improve the prediction accuracy in time series. Experiments on various time series are conducted to demonstrate the effectiveness of our method.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.