Papers
Topics
Authors
Recent
2000 character limit reached

Gradient-based Data Augmentation for Semi-Supervised Learning

Published 28 Mar 2020 in cs.LG, cs.CV, and stat.ML | (2003.12824v2)

Abstract: In semi-supervised learning (SSL), a technique called consistency regularization (CR) achieves high performance. It has been proved that the diversity of data used in CR is extremely important to obtain a model with high discrimination performance by CR. We propose a new data augmentation (Gradient-based Data Augmentation (GDA)) that is deterministically calculated from the image pixel value gradient of the posterior probability distribution that is the model output. We aim to secure effective data diversity for CR by utilizing three types of GDA. On the other hand, it has been demonstrated that the mixup method for labeled data and unlabeled data is also effective in SSL. We propose an SSL method named MixGDA by combining various mixup methods and GDA. The discrimination performance achieved by MixGDA is evaluated against the 13-layer CNN that is used as standard in SSL research. As a result, for CIFAR-10 (4000 labels), MixGDA achieves the same level of performance as the best performance ever achieved. For SVHN (250 labels, 500 labels and 1000 labels) and CIFAR-100 (10000 labels), MixGDA achieves state-of-the-art performance.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.