Harmonic Decompositions of Convolutional Networks
Abstract: We present a description of the function space and the smoothness class associated with a convolutional network using the machinery of reproducing kernel Hilbert spaces. We show that the mapping associated with a convolutional network expands into a sum involving elementary functions akin to spherical harmonics. This functional decomposition can be related to the functional ANOVA decomposition in nonparametric statistics. Building off our functional characterization of convolutional networks, we obtain statistical bounds highlighting an interesting trade-off between the approximation error and the estimation error.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.