Papers
Topics
Authors
Recent
Search
2000 character limit reached

Harmonic Decompositions of Convolutional Networks

Published 28 Mar 2020 in stat.ML and cs.LG | (2003.12756v2)

Abstract: We present a description of the function space and the smoothness class associated with a convolutional network using the machinery of reproducing kernel Hilbert spaces. We show that the mapping associated with a convolutional network expands into a sum involving elementary functions akin to spherical harmonics. This functional decomposition can be related to the functional ANOVA decomposition in nonparametric statistics. Building off our functional characterization of convolutional networks, we obtain statistical bounds highlighting an interesting trade-off between the approximation error and the estimation error.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.