Papers
Topics
Authors
Recent
Search
2000 character limit reached

Learning Dense Visual Correspondences in Simulation to Smooth and Fold Real Fabrics

Published 28 Mar 2020 in cs.RO, cs.CV, and cs.LG | (2003.12698v2)

Abstract: Robotic fabric manipulation is challenging due to the infinite dimensional configuration space, self-occlusion, and complex dynamics of fabrics. There has been significant prior work on learning policies for specific deformable manipulation tasks, but comparatively less focus on algorithms which can efficiently learn many different tasks. In this paper, we learn visual correspondences for deformable fabrics across different configurations in simulation and show that this representation can be used to design policies for a variety of tasks. Given a single demonstration of a new task from an initial fabric configuration, the learned correspondences can be used to compute geometrically equivalent actions in a new fabric configuration. This makes it possible to robustly imitate a broad set of multi-step fabric smoothing and folding tasks on multiple physical robotic systems. The resulting policies achieve 80.3% average task success rate across 10 fabric manipulation tasks on two different robotic systems, the da Vinci surgical robot and the ABB YuMi. Results also suggest robustness to fabrics of various colors, sizes, and shapes. See https://tinyurl.com/fabric-descriptors for supplementary material and videos.

Citations (27)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.