Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

word2vec, node2vec, graph2vec, X2vec: Towards a Theory of Vector Embeddings of Structured Data (2003.12590v1)

Published 27 Mar 2020 in cs.LG, cs.DB, cs.DM, and stat.ML

Abstract: Vector representations of graphs and relational structures, whether hand-crafted feature vectors or learned representations, enable us to apply standard data analysis and machine learning techniques to the structures. A wide range of methods for generating such embeddings have been studied in the machine learning and knowledge representation literature. However, vector embeddings have received relatively little attention from a theoretical point of view. Starting with a survey of embedding techniques that have been used in practice, in this paper we propose two theoretical approaches that we see as central for understanding the foundations of vector embeddings. We draw connections between the various approaches and suggest directions for future research.

Citations (151)

Summary

We haven't generated a summary for this paper yet.