Papers
Topics
Authors
Recent
Search
2000 character limit reached

Zero-shot and few-shot time series forecasting with ordinal regression recurrent neural networks

Published 26 Mar 2020 in cs.LG and stat.ML | (2003.12162v1)

Abstract: Recurrent neural networks (RNNs) are state-of-the-art in several sequential learning tasks, but they often require considerable amounts of data to generalise well. For many time series forecasting (TSF) tasks, only a few dozens of observations may be available at training time, which restricts use of this class of models. We propose a novel RNN-based model that directly addresses this problem by learning a shared feature embedding over the space of many quantised time series. We show how this enables our RNN framework to accurately and reliably forecast unseen time series, even when there is little to no training data available.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.