Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Schrödinger and polyharmonic operators on infinite graphs: Parabolic well-posedness and p-independence of spectra (2003.12031v1)

Published 26 Mar 2020 in math.SP, math-ph, math.AP, and math.MP

Abstract: We analyze properties of semigroups generated by Schr\"odinger operators $-\Delta+V$ or polyharmonic operators $-(-\Delta)m$, on metric graphs both on $Lp$-spaces and spaces of continuous functions. In the case of spatially constant potentials, we provide a semi-explicit formula for their kernel. Under an additional sub-exponential growth condition on the graph, we prove analyticity, ultracontractivity, and pointwise kernel estimates for these semigroups; we also show that their generators' spectra coincide on all relevant function spaces and present a Kre\u{\i}n-type dimension reduction, showing that their spectral values are determined by the spectra of generalized discrete Laplacians acting on various spaces of functions supported on combinatorial graphs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.