Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Resilient Distributed Diffusion for Multi-task Estimation (2003.11911v1)

Published 23 Mar 2020 in cs.MA

Abstract: Distributed diffusion is a powerful algorithm for multi-task state estimation which enables networked agents to interact with neighbors to process input data and diffuse information across the network. Compared to a centralized approach, diffusion offers multiple advantages that include robustness to node and link failures. In this paper, we consider distributed diffusion for multi-task estimation where networked agents must estimate distinct but correlated states of interest by processing streaming data. By exploiting the adaptive weights used for diffusing information, we develop attack models that drive normal agents to converge to states selected by the attacker. The attack models can be used for both stationary and non-stationary state estimation. In addition, we develop a resilient distributed diffusion algorithm under the assumption that the number of compromised nodes in the neighborhood of each normal node is bounded by $F$ and we show that resilience may be obtained at the cost of performance degradation. Finally, we evaluate the proposed attack models and resilient distributed diffusion algorithm using stationary and non-stationary multi-target localization.

Citations (3)

Summary

We haven't generated a summary for this paper yet.