The number of closed ideals in $L(L_p)$
Abstract: We show that there are $2{2{\aleph_0}}$ different closed ideals in the Banach algebra $L(L_p(0,1))$, $1<p\not= 2<\infty$. This solves a problem in A. Pietsch's 1978 book "Operator Ideals". The proof is quite different from other methods of producing closed ideals in the space of bounded operators on a Banach space; in particular, the ideals are not contained in the strictly singular operators and yet do not contain projections onto subspaces that are non Hilbertian. We give a criterion for a space with an unconditional basis to have $2{2{\aleph_0}}$ closed ideals in terms of the existence of a single operator on the space with some special asymptotic properties. We then show that for $1<q<2$ the space ${\frak X}_q$ of Rosenthal, which is isomorphic to a complemented subspace of $L_q(0,1)$, admits such an operator.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.