Papers
Topics
Authors
Recent
Search
2000 character limit reached

Rate optimality of adaptive finite element methods with respect to the overall computational costs

Published 24 Mar 2020 in math.NA and cs.NA | (2003.10785v1)

Abstract: We consider adaptive finite element methods for second-order elliptic PDEs, where the arising discrete systems are not solved exactly. For contractive iterative solvers, we formulate an adaptive algorithm which monitors and steers the adaptive mesh-refinement as well as the inexact solution of the arising discrete systems. We prove that the proposed strategy leads to linear convergence with optimal algebraic rates. Unlike prior works, however, we focus on convergence rates with respect to the overall computational costs. In explicit terms, the proposed adaptive strategy thus guarantees quasi-optimal computational time. In particular, our analysis covers linear problems, where the linear systems are solved by an optimally preconditioned CG method as well as nonlinear problems with strongly monotone nonlinearity which are linearized by the so-called Zarantonello iteration.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.