Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Central Limit Theorem for incomplete U-statistics over triangular arrays

Published 23 Mar 2020 in math.PR, math.ST, and stat.TH | (2003.10115v1)

Abstract: We analyze the fluctuations of incomplete $U$-statistics over a triangular array of independent random variables. We give criteria for a Central Limit Theorem (CLT, for short) to hold in the sense that we prove that an appropriately scaled and centered version of the U-statistic converges to a normal random variable. Our method of proof relies on a martingale CLT. A possible application -- a CLT for the hitting time for random walk on random graphs -- will be presented in \cite{LoTe20b}

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.