The $\mathcal{S}$-cone and a primal-dual view on second-order representability (2003.09495v2)
Abstract: The $\mathcal{S}$-cone provides a common framework for cones of polynomials or exponential sums which establish non-negativity upon the arithmetic-geometric inequality, in particular for sums of non-negative circuit polynomials (SONC) or sums of arithmetic-geometric exponentials (SAGE). In this paper, we study the $\mathcal{S}$-cone and its dual from the viewpoint of second-order representability. Extending results of Averkov and of Wang and Magron on the primal SONC cone, we provide explicit generalized second-order descriptions for rational $\mathcal{S}$-cones and theirs duals.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.