Papers
Topics
Authors
Recent
Search
2000 character limit reached

The $\mathcal{S}$-cone and a primal-dual view on second-order representability

Published 20 Mar 2020 in math.OC | (2003.09495v2)

Abstract: The $\mathcal{S}$-cone provides a common framework for cones of polynomials or exponential sums which establish non-negativity upon the arithmetic-geometric inequality, in particular for sums of non-negative circuit polynomials (SONC) or sums of arithmetic-geometric exponentials (SAGE). In this paper, we study the $\mathcal{S}$-cone and its dual from the viewpoint of second-order representability. Extending results of Averkov and of Wang and Magron on the primal SONC cone, we provide explicit generalized second-order descriptions for rational $\mathcal{S}$-cones and theirs duals.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.