Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

One Neuron to Fool Them All (2003.09372v2)

Published 20 Mar 2020 in cs.LG and stat.ML

Abstract: Despite vast research in adversarial examples, the root causes of model susceptibility are not well understood. Instead of looking at attack-specific robustness, we propose a notion that evaluates the sensitivity of individual neurons in terms of how robust the model's output is to direct perturbations of that neuron's output. Analyzing models from this perspective reveals distinctive characteristics of standard as well as adversarially-trained robust models, and leads to several curious results. In our experiments on CIFAR-10 and ImageNet, we find that attacks using a loss function that targets just a single sensitive neuron find adversarial examples nearly as effectively as ones that target the full model. We analyze the properties of these sensitive neurons to propose a regularization term that can help a model achieve robustness to a variety of different perturbation constraints while maintaining accuracy on natural data distributions. Code for all our experiments is available at https://github.com/iamgroot42/sauron .

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Anshuman Suri (21 papers)
  2. David Evans (63 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com