Ordered Functional Decision Diagrams: A Functional Semantics For Binary Decision Diagrams
Abstract: We introduce a novel framework, termed $\lambda$DD, that revisits Binary Decision Diagrams from a purely functional point of view. The framework allows to classify the already existing variants, including the most recent ones like Chain-DD and ESRBDD, as implementations of a special class of ordered models. We enumerate, in a principled way, all the models of this class and isolate its most expressive model. This new model, termed $\lambda$DD-O-NUCX, is suitable for both dense and sparse Boolean functions, and is moreover invariant by negation. The canonicity of $\lambda$DD-O-NUCX is formally verified using the Coq proof assistant. We furthermore give bounds on the size of the different diagrams: the potential gain achieved by more expressive models can be at most linear in the number of variables n.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.