Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multilayer Dense Connections for Hierarchical Concept Classification

Published 19 Mar 2020 in cs.CV, cs.LG, and eess.IV | (2003.09015v2)

Abstract: Classification is a pivotal function for many computer vision tasks such as object classification, detection, scene segmentation. Multinomial logistic regression with a single final layer of dense connections has become the ubiquitous technique for CNN-based classification. While these classifiers project a mapping between the input and a set of output category classes, they do not typically yield a comprehensive description of the category. In particular, when a CNN based image classifier correctly identifies the image of a Chimpanzee, its output does not clarify that Chimpanzee is a member of Primate, Mammal, Chordate families and a living thing. We propose a multilayer dense connectivity for concurrent prediction of category and its conceptual superclasses in hierarchical order by the same CNN. We experimentally demonstrate that our proposed network can simultaneously predict both the coarse superclasses and finer categories better than several existing algorithms in multiple datasets.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.