Papers
Topics
Authors
Recent
Search
2000 character limit reached

Child Face Age-Progression via Deep Feature Aging

Published 17 Mar 2020 in cs.CV | (2003.08788v1)

Abstract: Given a gallery of face images of missing children, state-of-the-art face recognition systems fall short in identifying a child (probe) recovered at a later age. We propose a feature aging module that can age-progress deep face features output by a face matcher. In addition, the feature aging module guides age-progression in the image space such that synthesized aged faces can be utilized to enhance longitudinal face recognition performance of any face matcher without requiring any explicit training. For time lapses larger than 10 years (the missing child is found after 10 or more years), the proposed age-progression module improves the closed-set identification accuracy of FaceNet from 16.53% to 21.44% and CosFace from 60.72% to 66.12% on a child celebrity dataset, namely ITWCC. The proposed method also outperforms state-of-the-art approaches with a rank-1 identification rate of 95.91%, compared to 94.91%, on a public aging dataset, FG-NET, and 99.58%, compared to 99.50%, on CACD-VS. These results suggest that aging face features enhances the ability to identify young children who are possible victims of child trafficking or abduction.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.