Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Analysis on the Learning Rules of the Skip-Gram Model (2003.08489v1)

Published 18 Mar 2020 in cs.CL

Abstract: To improve the generalization of the representations for natural language processing tasks, words are commonly represented using vectors, where distances among the vectors are related to the similarity of the words. While word2vec, the state-of-the-art implementation of the skip-gram model, is widely used and improves the performance of many natural language processing tasks, its mechanism is not yet well understood. In this work, we derive the learning rules for the skip-gram model and establish their close relationship to competitive learning. In addition, we provide the global optimal solution constraints for the skip-gram model and validate them by experimental results.

Citations (11)

Summary

We haven't generated a summary for this paper yet.