Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discovering Business Area Effects to Process Mining Analysis Using Clustering and Influence Analysis (2003.08170v1)

Published 18 Mar 2020 in cs.DB and cs.LG

Abstract: A common challenge for improving business processes in large organizations is that business people in charge of the operations are lacking a fact-based understanding of the execution details, process variants, and exceptions taking place in business operations. While existing process mining methodologies can discover these details based on event logs, it is challenging to communicate the process mining findings to business people. In this paper, we present a novel methodology for discovering business areas that have a significant effect on the process execution details. Our method uses clustering to group similar cases based on process flow characteristics and then influence analysis for detecting those business areas that correlate most with the discovered clusters. Our analysis serves as a bridge between BPM people and business, people facilitating the knowledge sharing between these groups. We also present an example analysis based on publicly available real-life purchase order process data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Teemu Lehto (5 papers)
  2. Markku Hinkka (4 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.