Papers
Topics
Authors
Recent
2000 character limit reached

Averages of products and ratios of characteristic polynomials in polynomial ensembles (2003.08128v2)

Published 18 Mar 2020 in math-ph and math.MP

Abstract: Polynomial ensembles are a sub-class of probability measures within determinantal point processes. Examples include products of independent random matrices, with applications to Lyapunov exponents, and random matrices with an external field, that may serve as schematic models of quantum field theories with temperature. We first analyse expectation values of ratios of an equal number of characteristic polynomials in general polynomial ensembles. Using Schur polynomials we show that polynomial ensembles constitute Giambelli compatible point processes, leading to a determinant formula for such ratios as in classical ensembles of random matrices. In the second part we introduce invertible polynomial ensembles given e.g. by random matrices with an external field. Expectation values of arbitrary ratios of characteristic polynomials are expressed in terms of multiple contour integrals. This generalises previous findings by one of the authors for a single ratio in the context of eigenvector statistics in the complex Ginibre ensemble.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.