String topology of finite groups of Lie type (2003.07852v1)
Abstract: We show that the mod $\ell$ cohomology of any finite group of Lie type in characteristic $p$ different from $\ell$ admits the structure of a module over the mod $\ell$ cohomology of the free loop space of the classifying space $BG$ of the corresponding compact Lie group $G$, via ring and module structures constructed from string topology, a la Chas-Sullivan. If a certain fundamental class in the homology of the finite group of Lie type is non-trivial, then this module structure becomes free of rank one, and provides a structured isomorphism between the two cohomology rings equipped with the cup product, up to a filtration. We verify the nontriviality of the fundamental class in a range of cases, including all simply connected untwisted classical groups over the field of $q$ elements, with $q$ congruent to 1 mod $\ell$. We also show how to deal with twistings and get rid of the congruence condition by replacing $BG$ by a certain $\ell$-compact fixed point group depending on the order of $q$ mod $\ell$, without changing the finite group. With this modification, we know of no examples where the fundamental class is trivial, raising the possibility of a general structural answer to an open question of Tezuka, who speculated about the existence of an isomorphism between the two cohomology rings.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.