Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Degree irregularity and rank probability bias in network meta-analysis (2003.07662v1)

Published 17 Mar 2020 in stat.ME and cond-mat.stat-mech

Abstract: Network meta-analysis (NMA) is a statistical technique for the comparison of treatment options. The nodes of the network are the competing treatments and edges represent comparisons of treatments in trials. Outcomes of Bayesian NMA include estimates of treatment effects, and the probabilities that each treatment is ranked best, second best and so on. How exactly network geometry affects the accuracy and precision of these outcomes is not fully understood. Here we carry out a simulation study and find that disparity in the number of trials involving different treatments leads to a systematic bias in estimated rank probabilities. This bias is associated with an increased variation in the precision of treatment effect estimates. Using ideas from the theory of complex networks, we define a measure of `degree irregularity' to quantify asymmetry in the number of studies involving each treatment. Our simulations indicate that more regular networks have more precise treatment effect estimates and smaller bias of rank probabilities. We also find that degree regularity is a better indicator of NMA quality than both the total number of studies in a network and the disparity in the number of trials per comparison. These results have implications for planning future trials. We demonstrate that choosing trials which reduce the network's irregularity can improve the precision and accuracy of NMA outcomes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.