Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adapting Deep Learning Methods for Mental Health Prediction on Social Media (2003.07634v1)

Published 17 Mar 2020 in cs.CL

Abstract: Mental health poses a significant challenge for an individual's well-being. Text analysis of rich resources, like social media, can contribute to deeper understanding of illnesses and provide means for their early detection. We tackle a challenge of detecting social media users' mental status through deep learning-based models, moving away from traditional approaches to the task. In a binary classification task on predicting if a user suffers from one of nine different disorders, a hierarchical attention network outperforms previously set benchmarks for four of the disorders. Furthermore, we explore the limitations of our model and analyze phrases relevant for classification by inspecting the model's word-level attention weights.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Michael Strube (26 papers)
  2. Ivan Sekulić (12 papers)
Citations (58)

Summary

We haven't generated a summary for this paper yet.