Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Numerical Transform of Random Forest Regressors corrects Systematically-Biased Predictions

Published 16 Mar 2020 in cs.LG, q-bio.QM, and stat.ML | (2003.07445v1)

Abstract: Over the past decade, random forest models have become widely used as a robust method for high-dimensional data regression tasks. In part, the popularity of these models arises from the fact that they require little hyperparameter tuning and are not very susceptible to overfitting. Random forest regression models are comprised of an ensemble of decision trees that independently predict the value of a (continuous) dependent variable; predictions from each of the trees are ultimately averaged to yield an overall predicted value from the forest. Using a suite of representative real-world datasets, we find a systematic bias in predictions from random forest models. We find that this bias is recapitulated in simple synthetic datasets, regardless of whether or not they include irreducible error (noise) in the data, but that models employing boosting do not exhibit this bias. Here we demonstrate the basis for this problem, and we use the training data to define a numerical transformation that fully corrects it. Application of this transformation yields improved predictions in every one of the real-world and synthetic datasets evaluated in our study.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.