Papers
Topics
Authors
Recent
Search
2000 character limit reached

A CNN-Based Blind Denoising Method for Endoscopic Images

Published 16 Mar 2020 in eess.IV and cs.CV | (2003.06986v1)

Abstract: The quality of images captured by wireless capsule endoscopy (WCE) is key for doctors to diagnose diseases of gastrointestinal (GI) tract. However, there exist many low-quality endoscopic images due to the limited illumination and complex environment in GI tract. After an enhancement process, the severe noise become an unacceptable problem. The noise varies with different cameras, GI tract environments and image enhancement. And the noise model is hard to be obtained. This paper proposes a convolutional blind denoising network for endoscopic images. We apply Deep Image Prior (DIP) method to reconstruct a clean image iteratively using a noisy image without a specific noise model and ground truth. Then we design a blind image quality assessment network based on MobileNet to estimate the quality of the reconstructed images. The estimated quality is used to stop the iterative operation in DIP method. The number of iterations is reduced about 36% by using transfer learning in our DIP process. Experimental results on endoscopic images and real-world noisy images demonstrate the superiority of our proposed method over the state-of-the-art methods in terms of visual quality and quantitative metrics.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.