Papers
Topics
Authors
Recent
2000 character limit reached

Semi-Modular Inference: enhanced learning in multi-modular models by tempering the influence of components

Published 15 Mar 2020 in stat.ME, math.ST, stat.ML, and stat.TH | (2003.06804v1)

Abstract: Bayesian statistical inference loses predictive optimality when generative models are misspecified. Working within an existing coherent loss-based generalisation of Bayesian inference, we show existing Modular/Cut-model inference is coherent, and write down a new family of Semi-Modular Inference (SMI) schemes, indexed by an influence parameter, with Bayesian inference and Cut-models as special cases. We give a meta-learning criterion and estimation procedure to choose the inference scheme. This returns Bayesian inference when there is no misspecification. The framework applies naturally to Multi-modular models. Cut-model inference allows directed information flow from well-specified modules to misspecified modules, but not vice versa. An existing alternative power posterior method gives tunable but undirected control of information flow, improving prediction in some settings. In contrast, SMI allows tunable and directed information flow between modules. We illustrate our methods on two standard test cases from the literature and a motivating archaeological data set.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.