Papers
Topics
Authors
Recent
Search
2000 character limit reached

Non-Local Part-Aware Point Cloud Denoising

Published 14 Mar 2020 in cs.CV | (2003.06631v1)

Abstract: This paper presents a novel non-local part-aware deep neural network to denoise point clouds by exploring the inherent non-local self-similarity in 3D objects and scenes. Different from existing works that explore small local patches, we design the non-local learning unit (NLU) customized with a graph attention module to adaptively capture non-local semantically-related features over the entire point cloud. To enhance the denoising performance, we cascade a series of NLUs to progressively distill the noise features from the noisy inputs. Further, besides the conventional surface reconstruction loss, we formulate a semantic part loss to regularize the predictions towards the relevant parts and enable denoising in a part-aware manner. Lastly, we performed extensive experiments to evaluate our method, both quantitatively and qualitatively, and demonstrate its superiority over the state-of-the-arts on both synthetic and real-scanned noisy inputs.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.