Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dependency-Aware Software Requirements Selection using Fuzzy Graphs and Integer Programming (2003.05785v1)

Published 11 Mar 2020 in cs.SE

Abstract: Software requirements selection aims to find an optimal subset of the requirements with the highest value while respecting the project constraints. But the value of a requirement may depend on the presence or absence of other requirements in the optimal subset. Such Value Dependencies, however, are imprecise and hard to capture. In this paper, we propose a method based on integer programming and fuzzy graphs to account for value dependencies and their imprecision in software requirements selection. The proposed method, referred to as Dependency-Aware Software Requirements Selection (DARS), is comprised of three components: (i) an automated technique for the identification of value dependencies from user preferences, (ii) a modeling technique based on fuzzy graphs that allows for capturing the imprecision of value dependencies, and (iii) an Integer Linear Programming (ILP) model that takes into account user preferences and value dependencies identified from those preferences to reduce the risk of value loss in software projects. Our work is verified by studying a real-world software project. The results show that our proposed method reduces the value loss in software projects and is scalable to large requirement sets.

Citations (6)

Summary

We haven't generated a summary for this paper yet.