Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Fast Gradient Method for Model Predictive Control with Input Rate and Amplitude Constraints (2003.05667v1)

Published 12 Mar 2020 in math.OC, cs.SY, and eess.SY

Abstract: This paper is concerned with the computing efficiency of model predictive control (MPC) problems for dynamical systems with both rate and amplitude constraints on the inputs. Instead of augmenting the decision variables of the underlying finite-horizon optimal control problem to accommodate the input rate constraints, we propose to solve this problem using the fast gradient method (FGM), where the projection step is solved using Dykstra's algorithm. We show that, relative to the Alternating Direction of Method Multipliers (ADMM), this approach greatly reduces the computation time while halving the memory usage. Our algorithm is implemented in C and its performance demonstrated using several examples.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com