Papers
Topics
Authors
Recent
Search
2000 character limit reached

Bloch electrons on honeycomb lattice and toric Calabi-Yau geometry

Published 12 Mar 2020 in hep-th | (2003.05662v2)

Abstract: We find a new relation between the spectral problem for Bloch electrons on a two-dimensional honeycomb lattice in a uniform magnetic field and that for quantum geometry of a toric Calabi-Yau threefold. We show that a difference equation for the Bloch electron is identical to a quantum mirror curve of the Calabi-Yau threefold. As an application, we show that bandwidths of the electron spectra in the weak magnetic flux regime are systematically calculated by the topological string free energies at conifold singular points in the Nekrasov-Shatashvili limit.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.