Papers
Topics
Authors
Recent
2000 character limit reached

RNN-based Online Learning: An Efficient First-Order Optimization Algorithm with a Convergence Guarantee

Published 7 Mar 2020 in cs.LG and stat.ML | (2003.03601v2)

Abstract: We investigate online nonlinear regression with continually running recurrent neural network networks (RNNs), i.e., RNN-based online learning. For RNN-based online learning, we introduce an efficient first-order training algorithm that theoretically guarantees to converge to the optimum network parameters. Our algorithm is truly online such that it does not make any assumption on the learning environment to guarantee convergence. Through numerical simulations, we verify our theoretical results and illustrate significant performance improvements achieved by our algorithm with respect to the state-of-the-art RNN training methods.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.