Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CPM R-CNN: Calibrating Point-guided Misalignment in Object Detection (2003.03570v2)

Published 7 Mar 2020 in cs.CV

Abstract: In object detection, offset-guided and point-guided regression dominate anchor-based and anchor-free method separately. Recently, point-guided approach is introduced to anchor-based method. However, we observe points predicted by this way are misaligned with matched region of proposals and score of localization, causing a notable gap in performance. In this paper, we propose CPM R-CNN which contains three efficient modules to optimize anchor-based point-guided method. According to sufficient evaluations on the COCO dataset, CPM R-CNN is demonstrated efficient to improve the localization accuracy by calibrating mentioned misalignment. Compared with Faster R-CNN and Grid R-CNN based on ResNet-101 with FPN, our approach can substantially improve detection mAP by 3.3% and 1.5% respectively without whistles and bells. Moreover, our best model achieves improvement by a large margin to 49.9% on COCO test-dev. Code and models will be publicly available.

Citations (15)

Summary

We haven't generated a summary for this paper yet.