Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Finding online neural update rules by learning to remember (2003.03124v1)

Published 6 Mar 2020 in cs.LG, cs.NE, and stat.ML

Abstract: We investigate learning of the online local update rules for neural activations (bodies) and weights (synapses) from scratch. We represent the states of each weight and activation by small vectors, and parameterize their updates using (meta-) neural networks. Different neuron types are represented by different embedding vectors which allows the same two functions to be used for all neurons. Instead of training directly for the objective using evolution or long term back-propagation, as is commonly done in similar systems, we motivate and study a different objective: That of remembering past snippets of experience. We explain how this objective relates to standard back-propagation training and other forms of learning. We train for this objective using short term back-propagation and analyze the performance as a function of both the different network types and the difficulty of the problem. We find that this analysis gives interesting insights onto what constitutes a learning rule. We also discuss how such system could form a natural substrate for addressing topics such as episodic memories, meta-learning and auxiliary objectives.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.