Papers
Topics
Authors
Recent
2000 character limit reached

Lattice glass model in three spatial dimensions

Published 5 Mar 2020 in cond-mat.stat-mech and cond-mat.dis-nn | (2003.02872v2)

Abstract: The understanding of thermodynamic glass transition has been hindered by the lack of proper models beyond mean-field theories. Here, we propose a three-dimensional lattice glass model on a simple cubic lattice that exhibits the typical dynamics observed in fragile supercooled liquids such as two-step relaxation, super-Arrhenius growth in the relaxation time, and dynamical heterogeneity. Using advanced Monte Carlo methods, we compute the thermodynamic properties deep inside the glassy temperature regime, well below the onset temperature of the slow dynamics. The specific heat has a finite jump towards the thermodynamic limit with critical exponents close to those expected from the hyperscaling and the random first-order transition theory for the glass transition. We also study an effective free energy of glasses, the Franz--Parisi potential, as a function of the overlap between equilibrium and quenched configurations. The effective free energy indicates the existence of a first-order phase transition, consistent with the random first-order transition theory. These findings strongly suggest that the glassy dynamics of the model has its origin in thermodynamics.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.