Papers
Topics
Authors
Recent
2000 character limit reached

Wilson Action for the $O(N)$ Model

Published 5 Mar 2020 in hep-th and cond-mat.other | (2003.02773v2)

Abstract: In this paper the fixed-point Wilson action for the critical $O(N)$ model in $D=4-\eps$ dimensions is written down in the $\eps$ expansion to order $\eps2$. It is obtained by solving the fixed-point Polchinski Exact Renormalization Group equation (with anomalous dimension) in powers of $\eps$. This is an example of a theory that has scale and conformal invariance despite having a finite UV cutoff. The energy-momentum tensor for this theory is also constructed (at zero momentum) to order $\eps2$. This is done by solving the Ward-Takahashi identity for the fixed point action. It is verified that the trace of the energy-momentum tensor is proportional to the violation of scale invariance as given by the exact RG, i.e., the $\beta$ function. The vanishing of the trace at the fixed point ensures conformal invariance. Some examples of calculations of correlation functions are also given.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.