Papers
Topics
Authors
Recent
2000 character limit reached

Knot Selection in Sparse Gaussian Processes with a Variational Objective Function

Published 5 Mar 2020 in stat.ML and cs.LG | (2003.02729v2)

Abstract: Sparse, knot-based Gaussian processes have enjoyed considerable success as scalable approximations to full Gaussian processes. Certain sparse models can be derived through specific variational approximations to the true posterior, and knots can be selected to minimize the Kullback-Leibler divergence between the approximate and true posterior. While this has been a successful approach, simultaneous optimization of knots can be slow due to the number of parameters being optimized. Furthermore, there have been few proposed methods for selecting the number of knots, and no experimental results exist in the literature. We propose using a one-at-a-time knot selection algorithm based on Bayesian optimization to select the number and locations of knots. We showcase the competitive performance of this method relative to simultaneous optimization of knots on three benchmark data sets, but at a fraction of the computational cost.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.