Papers
Topics
Authors
Recent
2000 character limit reached

Knot Selection in Sparse Gaussian Processes

Published 21 Feb 2020 in stat.ML and cs.LG | (2002.09538v1)

Abstract: Knot-based, sparse Gaussian processes have enjoyed considerable success as scalable approximations to full Gaussian processes. Problems can occur, however, when knot selection is done by optimizing the marginal likelihood. For example, the marginal likelihood surface is highly multimodal, which can cause suboptimal knot placement where some knots serve practically no function. This is especially a problem when many more knots are used than are necessary, resulting in extra computational cost for little to no gains in accuracy. We propose a one-at-a-time knot selection algorithm to select both the number and placement of knots. Our algorithm uses Bayesian optimization to efficiently propose knots that are likely to be good and largely avoids the pathologies encountered when using the marginal likelihood as the objective function. We provide empirical results showing improved accuracy and speed over the current standard approaches.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.