EPINE: Enhanced Proximity Information Network Embedding (2003.02689v1)
Abstract: Unsupervised homogeneous network embedding (NE) represents every vertex of networks into a low-dimensional vector and meanwhile preserves the network information. Adjacency matrices retain most of the network information, and directly charactrize the first-order proximity. In this work, we devote to mining valuable information in adjacency matrices at a deeper level. Under the same objective, many NE methods calculate high-order proximity by the powers of adjacency matrices, which is not accurate and well-designed enough. Instead, we propose to redefine high-order proximity in a more intuitive manner. Besides, we design a novel algorithm for calculation, which alleviates the scalability problem in the field of accurate calculation for high-order proximity. Comprehensive experiments on real-world network datasets demonstrate the effectiveness of our method in downstream machine learning tasks such as network reconstruction, link prediction and node classification.
Collections
Sign up for free to add this paper to one or more collections.