Papers
Topics
Authors
Recent
2000 character limit reached

The Rational Cherednik Algebra of Type $A_1$ with Divided Powers

Published 5 Mar 2020 in math.RT | (2003.02382v1)

Abstract: Motivated by the recent developments of the theory of Cherednik algebras in positive characteristic, we study rational Cherednik algebras with divided powers. In our research we have started with the simplest case, the rational Cherednik algebra of type $A_1$. We investigate its maximal divided power extensions over $R[c]$ and $R$ for arbitrary principal ideal domains $R$ of characteristic zero. In these cases, we prove that the maximal divided power extensions are free modules over the base rings, and construct an explicit basis in the case of $R[c]$. In addition, we provide an abstract construction of the rational Cherednik algebra of type $A_1$ over an arbitrary ring, and prove that this generalization expands the rational Cherednik algebra to include all of the divided powers.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.