Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On uniform observability of gradient flows in the vanishing viscosity limit (2003.02147v2)

Published 4 Mar 2020 in math.AP and math.OC

Abstract: We consider a transport equation by a gradient vector field with a small viscous perturbation --$\epsilon\Delta_g$. We study uniform observability (resp. controllability) properties in the (singular) vanishing viscosity limit $\epsilon\rightarrow 0+$, that is, the possibility of having a uniformly bounded observation constant (resp. control cost). We prove with a series of examples that in general, the minimal time for uniform observability may be much larger than the minimal time needed for the observability of the limit equation $\epsilon = 0$. We also prove that the two minimal times coincides for positive solutions. The proofs rely on a semiclassical reformulation of the problem together with (a) Agmon estimates concerning decay of eigenfunctions in the classically forbidden region HS84 fine estimates of the kernel of the semiclassical heat equation [LY86].

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.