Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Convergent Poincaré-Moser Reduction for Levi Degenerate Embedded $5$-Dimensional CR Manifolds (2003.01952v3)

Published 4 Mar 2020 in math.CV and math.DG

Abstract: Applying Lie's theory, we show that any $\mathcal{C}\omega$ hypersurface $M5 \subset \mathbb{C}3$ in the class $\mathfrak{C}{2,1}$ carries Cartan-Moser chains of orders $1$ and $2$. Integrating and straightening any order $2$ chain at any point $p \in M$ to be the $v$-axis in coordinates $(z, \zeta, w = u + i\, v)$ centered at $p$, we show that there exists a (unique up to 5 parameters) convergent change of complex coordinates fixing the origin in which $\gamma$ is the $v$-axis so that $M = {u=F(z,\zeta,\overline{z},\overline{\zeta},v)}$ has Poincar\'e-Moser reduced equation: \begin{align} u & = z\overline{z} + \tfrac{1}{2}\,\overline{z}2\zeta + \tfrac{1}{2}\,z2\overline{\zeta} + z\overline{z}\zeta\overline{\zeta} + \tfrac{1}{2}\,\overline{z}2\zeta\zeta\overline{\zeta} + \tfrac{1}{2}\,z2\overline{\zeta}\zeta\overline{\zeta} + z\overline{z}\zeta\overline{\zeta}\zeta\overline{\zeta} \ & + 2{\rm Re} { z3\overline{\zeta}2 F{3,0,0,2}(v) + \zeta\overline{\zeta} ( 3\,{z}2\overline{z}\overline{\zeta} F_{3,0,0,2}(v) ) } \ & + 2{\rm Re} { z5\overline{\zeta} F_{5,0,0,1}(v) + z4\overline{\zeta}2 F_{4,0,0,2}(v) + z3\overline{z}2\overline{\zeta} F_{3,0,2,1}(v) + z3\overline{z}\overline{\zeta}2 F_{3,0,1,2}(v) + z3{\overline{\zeta}}3 F_{3,0,0,3}(v) } \ & + z3\overline{z}3 {\rm O}{z,\overline{z}}(1) + 2{\rm Re} ( \overline{z}3\zeta {\rm O}{z,\zeta,\overline{z}}(3) ) + \zeta\overline{\zeta}\, {\rm O}{z,\zeta,\overline{z},\overline{\zeta}}(5). \end{align} The values at the origin of Pocchiola's two primary invariants are: [ W_0 = 4\overline{F{3,0,0,2}(0)}, \quad\quad J_0 = 20\, F_{5,0,0,1}(0). ] The proofs are detailed, accessible to non-experts. The computer-generated aspects (upcoming) have been reduced to a minimum.

Summary

We haven't generated a summary for this paper yet.