Notes on Randomized Algorithms
Abstract: Lecture notes for the Yale Computer Science course CPSC 469/569 Randomized Algorithms. Suitable for use as a supplementary text for an introductory graduate or advanced undergraduate course on randomized algorithms. Discusses tools from probability theory, including random variables and expectations, union bound arguments, concentration bounds, applications of martingales and Markov chains, and the Lov\'asz Local Lemma. Algorithmic topics include analysis of classic randomized algorithms such as Quicksort and Hoare's FIND, randomized tree data structures, hashing, Markov chain Monte Carlo sampling, randomized approximate counting, derandomization, quantum computing, and some examples of randomized distributed algorithms.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.