Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BUSU-Net: An Ensemble U-Net Framework for Medical Image Segmentation (2003.01581v2)

Published 3 Mar 2020 in eess.IV and cs.CV

Abstract: In recent years, convolutional neural networks (CNNs) have revolutionized medical image analysis. One of the most well-known CNN architectures in semantic segmentation is the U-net, which has achieved much success in several medical image segmentation applications. Also more recently, with the rise of autoML ad advancements in neural architecture search (NAS), methods like NAS-Unet have been proposed for NAS in medical image segmentation. In this paper, with inspiration from LadderNet, U-Net, autoML and NAS, we propose an ensemble deep neural network with an underlying U-Net framework consisting of bi-directional convolutional LSTMs and dense connections, where the first (from left) U-Net-like network is deeper than the second (from left). We show that this ensemble network outperforms recent state-of-the-art networks in several evaluation metrics, and also evaluate a lightweight version of this ensemble network, which also outperforms recent state-of-the-art networks in some evaluation metrics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Wei Hao Khoong (3 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.