Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Upper Confidence Primal-Dual Reinforcement Learning for CMDP with Adversarial Loss (2003.00660v3)

Published 2 Mar 2020 in cs.LG, math.OC, and stat.ML

Abstract: We consider online learning for episodic stochastically constrained Markov decision processes (CMDPs), which plays a central role in ensuring the safety of reinforcement learning. Here the loss function can vary arbitrarily across the episodes, and both the loss received and the budget consumption are revealed at the end of each episode. Previous works solve this problem under the restrictive assumption that the transition model of the Markov decision processes (MDPs) is known a priori and establish regret bounds that depend polynomially on the cardinalities of the state space $\mathcal{S}$ and the action space $\mathcal{A}$. In this work, we propose a new \emph{upper confidence primal-dual} algorithm, which only requires the trajectories sampled from the transition model. In particular, we prove that the proposed algorithm achieves $\widetilde{\mathcal{O}}(L|\mathcal{S}|\sqrt{|\mathcal{A}|T})$ upper bounds of both the regret and the constraint violation, where $L$ is the length of each episode. Our analysis incorporates a new high-probability drift analysis of Lagrange multiplier processes into the celebrated regret analysis of upper confidence reinforcement learning, which demonstrates the power of "optimism in the face of uncertainty" in constrained online learning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Shuang Qiu (46 papers)
  2. Xiaohan Wei (37 papers)
  3. Zhuoran Yang (155 papers)
  4. Jieping Ye (169 papers)
  5. Zhaoran Wang (164 papers)
Citations (45)

Summary

We haven't generated a summary for this paper yet.