Papers
Topics
Authors
Recent
Search
2000 character limit reached

Communication-Efficient Multimodal Split Learning for mmWave Received Power Prediction

Published 2 Mar 2020 in cs.NI | (2003.00645v2)

Abstract: The goal of this study is to improve the accuracy of millimeter wave received power prediction by utilizing camera images and radio frequency (RF) signals, while gathering image inputs in a communication-efficient and privacy-preserving manner. To this end, we propose a distributed multimodal ML framework, coined multimodal split learning (MultSL), in which a large neural network (NN) is split into two wirelessly connected segments. The upper segment combines images and received powers for future received power prediction, whereas the lower segment extracts features from camera images and compresses its output to reduce communication costs and privacy leakage. Experimental evaluation corroborates that MultSL achieves higher accuracy than the baselines utilizing either images or RF signals. Remarkably, without compromising accuracy, compressing the lower segment output by 16x yields 16x lower communication latency and 2.8% less privacy leakage compared to the case without compression.

Citations (56)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.