Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MBGD-RDA Training and Rule Pruning for Concise TSK Fuzzy Regression Models (2003.00608v2)

Published 1 Mar 2020 in cs.LG and stat.ML

Abstract: To effectively train Takagi-Sugeno-Kang (TSK) fuzzy systems for regression problems, a Mini-Batch Gradient Descent with Regularization, DropRule, and AdaBound (MBGD-RDA) algorithm was recently proposed. It has demonstrated superior performances; however, there are also some limitations, e.g., it does not allow the user to specify the number of rules directly, and only Gaussian MFs can be used. This paper proposes two variants of MBGD-RDA to remedy these limitations, and show that they outperform the original MBGD-RDA and the classical ANFIS algorithms with the same number of rules. Furthermore, we also propose a rule pruning algorithm for TSK fuzzy systems, which can reduce the number of rules without significantly sacrificing the regression performance. Experiments showed that the rules obtained from pruning are generally better than training them from scratch directly, especially when Gaussian MFs are used.

Citations (1)

Summary

We haven't generated a summary for this paper yet.