Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Extreme-Scale Density Functional Theory High Performance Computing of DGDFT for Tens of Thousands of Atoms using Millions of Cores on Sunway TaihuLight (2003.00407v2)

Published 1 Mar 2020 in physics.comp-ph and physics.chem-ph

Abstract: High performance computing (HPC) is a powerful tool to accelerate the Kohn-Sham density functional theory (KS-DFT) calculations on modern heterogeneous supercomputers. Here, we describe a massively extreme-scale parallel and portable implementation of discontinuous Galerkin density functional theory (DGDFT) method on the Sunway TaihuLight supercomputer. The DGDFT method uses the adaptive local basis (ALB) functions generated on-the-fly during the self-consistent field (SCF) iteration to solve the KS equations with the high precision comparable to that of plane-wave basis set. In particular, the DGDFT method adopts a two-level parallelization strategy that makes use of different types of data distribution, task scheduling, and data communication schemes, and combines with the feature of master-slave multi-thread heterogeneous parallelism of SW26010 processor, resulting in extreme-scale HPC KS-DFT calculations on the Sunway TaihuLight supercomputer. We show that the DGDFT method can scale up to 8,519,680 processing cores (131,072 core groups) on the Sunway TaihuLight supercomputer for investigating the electronic structures of two-dimensional (2D) metallic graphene systems containing tens of thousands of carbon atoms.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube