Papers
Topics
Authors
Recent
Search
2000 character limit reached

Contextual Policy Transfer in Reinforcement Learning Domains via Deep Mixtures-of-Experts

Published 29 Feb 2020 in cs.LG, cs.NE, cs.RO, cs.SY, and eess.SY | (2003.00203v2)

Abstract: In reinforcement learning, agents that consider the context, or current state, when selecting source policies for transfer have been shown to outperform context-free approaches. However, none of the existing approaches transfer knowledge contextually from model-based learners to a model-free learner. This could be useful, for instance, when source policies are intentionally learned on diverse simulations with plentiful data but transferred to a real-world setting with limited data. In this paper, we assume knowledge of estimated source task dynamics and policies, and common sub-goals but different dynamics. We introduce a novel deep mixture-of-experts formulation for learning state-dependent beliefs over source task dynamics that match the target dynamics using state trajectories collected from the target task. The mixture model is easy to interpret, demonstrates robustness to estimation errors in dynamics, and is compatible with most learning algorithms. We then show how this model can be incorporated into standard policy reuse frameworks, and demonstrate its effectiveness on benchmarks from OpenAI-Gym.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.